PMT

D	Ľ	7
Γ.		4

Question		n	Marking details	Marks Available
1	(a)	(i)		2
		(11)	Either $\lambda = 1.16 \text{ [m] (1)}$ f = 50 [Hz] (1) v = 58 [m s-1](1) Or $\lambda = 1.16 \text{ [m] (1)}$ $v = \frac{\lambda}{T} \text{ or } v = \frac{1.16}{0.02} (1)$ v = 58 [m s-1](1)	
		(iii) (iv)	[1 mark only if either 1.2m used or 1.74/0.03 used] All 4 nodes labelled Any crosses placed in first and last loops	3 1 1
	(b)	(i)		
		(ii)	Either line drawn \checkmark f = 17 Hz (1) UNIT mark New wavelength = 3.48 m or 3 × previous λ	1
			or appeal to $f = [n]\frac{r}{2L}(1)$ (Allow 1 mark only if $f = 34$ Hz) Allow e.c.f. from (b)(i)	2
	(c)	(i) (ii)	The displacement at any point is the [vector] sum of the displacements of the individual waves. t = 1.0 s; herizontal line shown (1)	1
			t = 2.0 s: inversion of $t = 0$ shown (1)	2
			Question 1 total	[13]

Question		n	Marking details	Marks Available
2 (a) (b)		(i) (ii) (i) (ii)	 I. Vibrations / oscillations / displacements [accept particle displacements] are perpendicular / at right angles / 90° to the propagation directions [or equiv.] II. Vibrations / oscillations / displacements [accept particle displacements] are in one direction [accept in one plane] Alternates [gradually] between light and dark (1) 2 extinctions / dark places in 360°/ or equivalent (1) [Accept an answer which assumes initially bright or initially dark] I. Light spreads out [round edge of each slit] [or equiv.] II. So light from the two slits overlaps [or equiv.] I. λ = ^{2.0 mm × 0.50 mm} (1) 	1 1 2 1 1
	(c)		1.5 m = 670 n[m] (1) [667 nm, accept 700 nm] II. Fringe separation increased (1); [bright] fringes dimmer (1) $3\lambda = d \sin 77^{\circ}$ [or by impl.] (1) $d = \frac{1}{5.00 \times 10^{5}}$ m [= 2.00 × 10 ⁻⁶ m] [or by impl.] (1) $\lambda = 650$ n[m] (1) Question 2 total	2 2 3 [13]

Question		on	Marking details				Marks Available	
3	(a)	(i) (ii) (iii) (iv)	Smooth curve drawn through all the points 46° [or as appropriate from drawn line] Reflected ray drawn with angle of reflection equal to θ_P by eye.				1 1 1	
			$\frac{\sin 14^{\circ}}{\sin 10^{\circ}} \checkmark$ 1.39 [±0.05] \checkmark	$\frac{\sin 28.5^{\circ}}{\sin 20^{\circ}}$ 1.40[±0.05]	$\frac{\sin 44^{\circ}}{\sin 30^{\circ}}$ 1.40[±0.05]	$\frac{\sin 64^{\circ}}{\sin 40^{\circ}}$ 1.40[±0.05]	$\frac{\sin 82^{\circ}}{\sin 45^{\circ}} \\ 1.40[\pm 0.05]$	
		(v)	implication I. Any $2 \times (1) = 1$ • Strai • Thro	or by implication I. Any $2 \times (1)$ from • Straight \checkmark				
			• Grad II. [<i>n</i> is the] grad	lient > 1 \checkmark dient				2 1
	(b)	(i) (ii) (iii)	1.530 sin $c = 1.5$ $c = 83^{\circ}$ (1) $\theta = 7^{\circ}$ [accept 6. Smaller <u>differen</u> travelling differen	1.530 sin $c = 1.520$ [sin 90°] (1) [or by impl.] $c = 83^{\circ}$ (1) $\theta = 7^{\circ}$ [accept 6.5°] e.c.f. from (b)(i) Smaller <u>differences</u> in distances travelled or times taken [by light				
			data / pulses (1) Less multimode	data / pulses (1) [or data can be transmitted at a greater rate] Less multimode dispersion only award 2 nd mark				
			Question 3 Total					[13]
4	(a)		$f_{\text{Thresh}} = \frac{\phi}{h} (1) [o$	$f_{\text{Thresh}} = \frac{\phi}{h} (1) \text{ [or by impl.]} = 5.1[3] \times 10^{14} \text{ [Hz]} (1)$				
	(b)	(i)	Photon $E = 6.63 \times 10^{-34} \times 7.4 \times 10^{14} [= 4.91 \times 10^{-19} \text{J}][\text{or by impl.}](1)$ $E_{\text{k max}} [= 4.91 \times 10^{-19} - 3.4 \times 10^{-19}] = 1.5 \times 10^{-19} [\text{J}] (1)$				2	
		(11)	[A single] photon gives its energy to an electron (1) Some of the energy used to escape from the metal (1).					2
	(c)	(i)	Points plotted at $(5.1 \times 10^{14}$ Hz, 0) and $(7.4 \times 10^{14}$ Hz, 1.5×10^{-19} J) (1) Allow e.c.f. from (a) and (b)(i) Straight line drawn through points (1)					
		(ii) (iii)	(One correct point only and a positive slope line = 1 mark) h / the Planck constant Straight line drawn with same gradient as (i) and to the right					2 1 1
			Question 4 Total				[10]	

Question		on	Marking details	Marks Available
5	(a)		$E = \frac{hc}{\lambda}$ [or equiv. eg. $E = hf$ and $\lambda = \frac{c}{f}$ or by impl] (1)	
			$\lambda_{\rm UG} = 6.95 \times 10^{-7} [\rm m] (1)$	2
	(b)	(i) (ii)	More electrons in level U than in level G They / the photons would be absorbed [accept 'disappear'] (1). The	1
		(iii)	energy would be used to excite ions [accept atoms] / raise electrons from G to U [or equiv.] (1)	2
		(iv)	G Both transitions shown Any 2 x (1) from • Passing / incident photon ✓	1
			 Excited for √ Electron drops to lower level √ The incident photon must have wavelength = λ_{UG} [or 695 nm] or must have energy 2.86 x 10⁻¹⁹ J √ 3rd mark 2 photons where there was one previously. Accept by implication e.g. in phase with the incident photon. 	3
	(c)		 Any 2 → (1); any third →(2) from [plane] polarised ✓ Coherent✓ Monochromaticy 	
			 Parallel beam√ 	2
			Question 5 Total	[11]

Question		n	Marking details	Marks Available
6	(a)	(i) (ii) (iii)	$\lambda_{\text{Peak}} = \frac{2.90 \times 10^{-3} \text{ K m}}{2.5 \times 10^{7} \text{ K}} (1) = 1.16 \times 10^{-10} \text{ [m]} (1)$ X-ray / γ -ray	2 1 1
	(b)	1 3		
	(c)		$A_2 T_2^4 = A_1 T_1^4 (1) \text{ or } T_2^4 = \frac{3.4 \times 10^{31}}{5.67 \times 10^{-8} \times 3.04 \times 10^9} \text{ K}^4 \text{ e.c.f from (b)}$ $T_2 = 2.1 \times 10^7 \text{ K (1)}$ Question 6 Total	2 [10]
7	(a)	(i) (ii)	 Any 3 × (1) from d have ¹/₃ electronic charge / -¹/₃e charge√ ds have greater mass than e s√ ds feel strong force [or interact with gluons]; e don't√ ds cannot be isolated; e can [or d can only be found in specific groupings; e can be by itself] √ ds have lepton number 0, es have lepton number 1 √ [3 × (-¹/₃e)] = -e [accept e or -1 or 1.6 × 10⁻¹⁹ C with some justification] 	3
	(b)		 Any 2 × (1) from Very short decay time ✓ Individual quark flavours conserved ✓ Accept: no neutrino [and no γ] emission 	2
	(c)	(i) (ii)	 x is an electron (1) y is an antineutrino (1) clear logical reasoning based on the laws of conservation of charge and of lepton number (1) Weak Question 7 Total	3 1 [10]