PH2

Question			Marking details	Marks Available
1	(a)	(i) (ii)	Either $\lambda=1.16[\mathrm{~m}](1)$ Or $f=50[\mathrm{~Hz}](1)$ $\lambda=1.16[\mathrm{~m}](1)$ $v=58\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1)$ $v=\frac{\lambda}{T}$ or $v=\frac{1.16}{0.02}(1)$ $v=58\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1)$	2
		(iii) (iv)	[1 mark only if either 1.2 m used or $1.74 / 0.03$ used] All 4 nodes labelled Any crosses placed in first and last loops	$\begin{aligned} & 3 \\ & 1 \\ & 1 \end{aligned}$
	(b)	(i)		
		(ii)	Either line drawn \checkmark $f=17 \mathrm{~Hz}$ (1) UNIT mark New wavelength $=3.48 \mathrm{~m}$ or $3 \times$ previous λ or appeal to $f=[n] \frac{v}{2 L}$ (1) (Allow 1 mark only if $f=34 \mathrm{~Hz}$) Allow e.c.f. from (b)(i)	1 2
	(c)	(i) (ii)	The displacement at any point is the [vector] sum of the displacements of the individual waves. $t=1.0 \mathrm{~s}$: horizontal line shown (1) $t=2.0 \mathrm{~s}$: inversion of $t=0$ shown (1)	1 2
			Question 1 total	[13]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available

\hline 2 \& (a)

(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

 \&

I. Vibrations / oscillations / displacements [accept particle displacements] are perpendicular / at right angles / 90° to the propagation directions [or equiv.]

II. Vibrations / oscillations / displacements [accept particle displacements] are in one direction [accept in one plane]

Alternates [gradually] between light and dark (1)

2 extinctions / dark places in 360° or equivalent (1)

[Accept an answer which assumes initially bright or initially dark]

I. Light spreads out [round edge of each slit] [or equiv.]

II. So light from the two slits overlaps [or equiv.]

I. $\lambda=\frac{2.0 \mathrm{~mm} \times 0.50 \mathrm{~mm}}{1.5 \mathrm{~m}}(1)$

$=670 \mathrm{n}[\mathrm{m}]$ (1) [667 nm, accept 700 nm]

II. Fringe separation increased (1); [bright] fringes dimmer (1)

$$
\begin{aligned}
& 3 \lambda=d \sin 77^{\circ} \text { [or by impl.] (1) } \\
& d=\frac{1}{5.00 \times 10^{5}} \mathrm{~m}\left[=2.00 \times 10^{-6} \mathrm{~m}\right] \text { [or by impl.] (1) } \\
& \lambda=650 \mathrm{n}[\mathrm{~m}](1)
\end{aligned}
$$

Question 2 total

 \&

1

2

1
1

2
2

3

[13]
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 3 \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(iv)

(v)

(i)

(ii)

(iii)

 \&

Smooth curve drawn through all the points 46° [or as appropriate from drawn line]

Reflected ray drawn with angle of reflection equal to θ_{P} by eye.

Any of:

I. Any $2 \times$ (1) from

- Straight \checkmark

- Through the origin \checkmark

- Gradient > 1

II. [n is the] gradient

$1.530 \sin c=1.520\left[\sin 90^{\circ}\right.$] (1) [or by impl.]

$$
c=83^{\circ}(1)
$$

$\theta=7^{\circ}$ [accept $\left.6.5^{\circ}\right]$ e.c.f. from (b)(i)

Smaller differences in distances travelled or times taken [by light travelling different paths] (1), so less blurring / smearing / overlap of data / pulses (1) [or data can be transmitted at a greater rate] Less multimode dispersion only award $2^{\text {nd }}$ mark

Question 3 Total

 \&

1
1
1

2

2
1

2
1

2

[13]
\end{tabular}

\hline 4 \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

(iii)

 \&

$$
f_{\text {Thresh }}=\frac{\phi}{h}(1)[\text { or by impl. }]=5.1[3] \times 10^{14}[\mathrm{~Hz}](1)
$$

Photon $E=6.63 \times 10^{-34} \times 7.4 \times 10^{14}\left[=4.91 \times 10^{-19} \mathrm{~J}\right][$ or by impl. $](1)$ $E_{\mathrm{k} \max }\left[=4.91 \times 10^{-19}-3.4 \times 10^{-19}\right]=1.5 \times 10^{-19}[\mathrm{~J}]$ (1)

[A single] photon gives its energy to an electron (1)

Some of the energy used to escape from the metal (1).

Points plotted at $\left(5.1 \times 10^{14} \mathrm{~Hz}, 0\right)$ and $\left(7.4 \times 10^{14} \mathrm{~Hz}, 1.5 \times 10^{-19} \mathrm{~J}\right)(1)$

Allow e.c.f. from (a) and (b)(i)

Straight line drawn through points (1)

(One correct point only and a positive slope line $=1$ mark)

$h /$ the Planck constant

Straight line drawn with same gradient as (i) and to the right

Question 4 Total

 \&

2

2

2

2
1
1

[10]
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline \multirow[t]{5}{*}{5} \& (a) \& \& \(E=\frac{h c}{\lambda}\) [or equiv. eg. \(E=h f\) and \(\lambda=\frac{c}{f}\) or by impl] (1) \(\lambda_{\mathrm{UG}}=6.95 \times 10^{-7}[\mathrm{~m}](1)\) \& 2 \\
\hline \& (b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
More electrons in level \(U\) than in level G \\
They / the photons would be absorbed [accept 'disappear'] (1). The energy would be used to excite ions [accept atoms] / raise electrons from G to U [or equiv.] (1)
\end{tabular} \& 2 \\
\hline \& \& (iv) \& \begin{tabular}{l}
Any \(2 \times\) (1) from \\
- Passing / incident photon \(\checkmark\) \\
- Excited ion \(\checkmark\) \\
- Electron drops to lower level \(\checkmark\) \\
- The incident photon must have wavelength \(=\lambda_{\mathrm{UG}}[\) or 695 nm\(]\) or must have energy \(2.86 \times 10^{-19} \mathrm{~J} \checkmark\) \\
\(3^{\text {rd }}\) mark \\
- 2 photons where there was one previously. Accept by implication e.g. in phase with the incident photon.
\end{tabular} \& 1

3

\hline \& (c) \& \& | Any $2 \rightarrow(1)$; any third $\rightarrow(2)$ from |
| :--- |
| - [plane] polarised |
| - Coherentr |
| - Monochromatic r |
| - Parallel beam \checkmark | \& 2

\hline \& \& \& Question 5 Total \& [11]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 6 \& (a)
(b)
(b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
\[
\lambda_{\text {Peak }}=\frac{2.90 \times 10^{-3} \mathrm{~K} \mathrm{~m}}{2.5 \times 10^{7} \mathrm{~K}}(1)=1.16 \times 10^{-10}[\mathrm{~m}](1)
\] \\
X-ray / \(\gamma\)-ray \\
Spectral intensity low in high \(\lambda\) 'tail' but not zero.
\[
\begin{aligned}
\& P=\sigma A \times\left(2.5 \times 10^{7} \mathrm{~K}\right)^{4} \text { [or by impl.] (1) } \\
\& \left.A=4 \pi \times 11000^{2} \text { [or by impl. }\right](1)\left[=1.52 \times 10^{9} \mathrm{~m}^{2}\right] \\
\& P=3.4 \times 10^{31} \mathrm{~W}(1) \text { UNIT mark }
\end{aligned}
\]
\[
\begin{aligned}
\& A_{2} T_{2}^{4}=A_{1} T_{1}^{4}(1) \text { or } T_{2}^{4}=\frac{3.4 \times 10^{31}}{5.67 \times 10^{-8} \times 3.04 \times 10^{9}} \mathrm{~K}^{4} \text { e.c.f from (b) } \\
\& T_{2}=2.1 \times 10^{7} \mathrm{~K}(1)
\end{aligned}
\] \\
Question 6 Total
\end{tabular} \& \begin{tabular}{l}
2
1 \\
1 \\
1 \\
3 \\
2 \\
[10]
\end{tabular} \\
\hline 7 \& (a)

(b)
(c) \& (i)
(ii)

(i)

(ii) \& \begin{tabular}{l}
Any $3 \times(1)$ from

- d have $1 / 3$ electronic charge $/-1 / 3$ e charge \checkmark

- ds have greater mass than e s \checkmark

- ds feel strong force [or interact with gluons]; e don't \checkmark

- ds cannot be isolated; e can [or d can only be found in specific groupings; e can be by itself] \checkmark

- ds have lepton number 0 , es have lepton number $1 \checkmark$ $[3 \times(-1 / 3 e)]=-e$ [accept e or -1 or $1.6 \times 10^{-19} \mathrm{C}$ with some justification]

Any $2 \times(1)$ from

- Very short decay time \checkmark

- Individual quark flavours conserved \checkmark

- Accept: no neutrino [and no γ] emission

x is an electron (1)

y is an antineutrino (1)

clear logical reasoning based on the laws of conservation of charge and of lepton number (1)

Weak

Question 7 Total

 \&

3

1

2

3

[10]
\end{tabular}

\hline
\end{tabular}

